Multipurpose Virtual Reality Environment for Biomedical and Health Applications

IEEE Trans Neural Syst Rehabil Eng. 2019 Aug;27(8):1511-1520. doi: 10.1109/TNSRE.2019.2926786. Epub 2019 Jul 4.

Abstract

Virtual reality is a trending, widely accessible, and contemporary technology of increasing utility to biomedical and health applications. However, most implementations of virtual reality environments are tailored to specific applications. We describe the complete development of a novel, open-source virtual reality environment that is suitable for multipurpose biomedical and healthcare applications. This environment can be interfaced with different hardware and data sources, ranging from gyroscopes to fMRI scanners. The developed environment simulates an immersive (first-person perspective) run in the countryside, in a virtual landscape with various salient features. The utility of the developed VR environment has been validated via two test applications: an application in the context of motor rehabilitation following injury of the lower limbs and an application in the context of real-time functional magnetic resonance imaging neurofeedback, to regulate brain function in specific brain regions of interest. Both applications were tested by pilot subjects that unanimously provided very positive feedback, suggesting that appropriately designed VR environments can indeed be robustly and efficiently used for multiple biomedical purposes. We attribute the versatility of our approach on three principles implicit in the design: selectivity, immersiveness, and adaptability. The software, including both applications, is publicly available free of charge, via a GitHub repository, in support of the Open Science Initiative. Although using this software requires specialized hardware and engineering know-how, we anticipate our contribution to catalyze further progress, interdisciplinary collaborations and replicability, with regards to the usage of virtual reality in biomedical and health applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Biomedical Research / methods*
  • Computer Graphics
  • Feedback, Psychological
  • Humans
  • Image Processing, Computer-Assisted
  • Leg Injuries / rehabilitation
  • Lower Extremity
  • Magnetic Resonance Imaging / methods
  • Neurofeedback
  • Pilot Projects
  • Rehabilitation / instrumentation
  • Rehabilitation / methods
  • Reproducibility of Results
  • Virtual Reality*