Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 37 (1), 126-135

A Cannabinoid Receptor-Mediated Mechanism Participates in the Neuroprotective Effects of Oleamide Against Excitotoxic Damage in Rat Brain Synaptosomes and Cortical Slices

Affiliations

A Cannabinoid Receptor-Mediated Mechanism Participates in the Neuroprotective Effects of Oleamide Against Excitotoxic Damage in Rat Brain Synaptosomes and Cortical Slices

Marisol Maya-López et al. Neurotox Res.

Abstract

A number of physiological responses in the central nervous system (CNS) are regulated by the endocannabinoid system (ECS). Inhibition of neuronal excitability via activation of cannabinoid receptors (CBr) constitutes a potential protective response against neurotoxic insults. Oleamide (ODA) is a fatty acid amide with endocannabinoid profile exerting several effects in the CNS, though its neuroprotective properties remain unknown. The tryptophan metabolite quinolinic acid (QUIN) elicits toxic effects via overactivation of N-methyl-D-aspartate receptors (NMDAr) after its accumulation in the CNS under pathological conditions. Here, we investigated the protective properties of ODA against the excitotoxic damage induced by QUIN in rat brain synaptosomes and cortical slices, and whether these effects are linked to the stimulation of the endocannabinoid system via CB1 and/or CB2 receptor activation. ODA (1-50 μM) prevented the QUIN (100 μM)-induced loss of mitochondrial reductive capacity in synaptosomes in a mechanism partially mediated by CB1 receptor, as evidenced by the recovery of mitochondrial dysfunction induced by co-incubation with the CB1 receptor antagonist/inverse agonist AM281 (1 μM). In cortical slices, ODA prevented the short-term QUIN-induced loss of cell viability and the cell damage in a partial CB1 and CB2 receptor-dependent manner. Altogether, these findings demonstrate the neuroprotective and modulatory properties of ODA in biological brain preparations exposed to excitotoxic insults and the partial role that the stimulation of CB1 and CB2 receptors exerts in these effects.

Keywords: Cannabinoid receptors; Endocannabinoid system; Excitotoxicity; Neuroprotection; Oleamide; Quinolinic acid.

Similar articles

See all similar articles

Cited by 1 article

References

    1. PLoS One. 2015 Mar 11;10(3):e0118512 - PubMed

References

    1. Br J Pharmacol. 2000 Jan;129(2):283-90 - PubMed

References

    1. Neurosci Lett. 2001 Nov 2;313(1-2):61-4 - PubMed

References

    1. Front Pharmacol. 2014 Jan 02;4:169 - PubMed

References

    1. Antioxid Redox Signal. 2013 Nov 20;19(15):1766-82 - PubMed

References

    1. AAPS PharmSci. 1999;1(2):E4 - PubMed

References

    1. Neuroscience. 2015 Nov 12;308:64-74 - PubMed

References

    1. Exp Mol Pathol. 2000 Dec;69(3):192-201 - PubMed

References

    1. J Neurochem. 2007 Mar;100(5):1375-86 - PubMed

References

    1. Br J Pharmacol. 2004 Jan;141(2):195-6 - PubMed

References

    1. J Biol Chem. 2016 May 6;291(19):9991-10005 - PubMed

References

    1. Exp Neurol. 2001 Nov;172(1):235-43 - PubMed

References

    1. Science. 1995 Jun 9;268(5216):1506-9 - PubMed

References

    1. Front Pharmacol. 2017 Nov 21;8:817 - PubMed

References

    1. J Neurochem. 2006 Dec;99(6):1531-42 - PubMed

References

    1. Neuroscience. 2019 Mar 1;401:84-95 - PubMed

References

    1. Drug Test Anal. 2014 Jan-Feb;6(1-2):24-30 - PubMed

References

    1. Br J Pharmacol. 2004 Jan;141(2):253-62 - PubMed

References

    1. Brain Res Bull. 2016 Jan;120:123-30 - PubMed

References

    1. Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):2075-87 - PubMed

References

    1. Biochem Biophys Res Commun. 2003 Oct 24;310(3):677-80 - PubMed

References

    1. FEBS Lett. 1999 Dec 17;463(3):281-4 - PubMed

References

    1. Neuroscience. 2015 Jan 29;285:97-106 - PubMed

References

    1. Brain Res. 2010 Jun 25;1342:127-37 - PubMed

References

    1. Antioxid Redox Signal. 2018 Jun 20;28(18):1626-1651 - PubMed

References

    1. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8257-62 - PubMed

References

    1. Neuropharmacology. 2015 May;92:69-79 - PubMed

References

    1. Exp Gerontol. 2014 Jul;55:134-42 - PubMed

References

    1. Nat Rev Neurosci. 2012 Jul;13(7):465-77 - PubMed

References

    1. Sci Rep. 2019 Feb 28;9(1):3135 - PubMed

References

    1. J Pharmacol Exp Ther. 2001 Feb;296(2):420-5 - PubMed

References

    1. Oncotarget. 2016 Aug 23;7(34):55840-55862 - PubMed

References

    1. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4810-5 - PubMed

References

    1. Toxicol In Vitro. 2015 Oct;29(7):1941-51 - PubMed

References

    1. Mol Neurobiol. 2019 Feb;56(2):844-856 - PubMed

References

    1. Biochem Pharmacol. 2018 Nov;157:180-188 - PubMed

References

    1. Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1466-74 - PubMed

References

    1. Nat Neurosci. 2012 Mar 04;15(4):558-64 - PubMed

References

    1. Neurosci Lett. 2010 May 3;474(3):148-153 - PubMed

References

    1. J Pharmacol Exp Ther. 2002 Jul;302(1):73-9 - PubMed

References

    1. Vitam Horm. 2009;81:55-78 - PubMed

References

    1. J Neurosci Res. 2007 Aug 1;85(10):2059-70 - PubMed

References

    1. Neuroscience. 2014 Feb 28;260:130-9 - PubMed

References

    1. Behav Brain Res. 2007 Aug 22;182(1):88-94 - PubMed

References

    1. Br J Pharmacol. 2007 Nov;152(5):576-82 - PubMed

References

    1. Nature. 1997 Sep 4;389(6646):25-6 - PubMed

References

    1. Br J Pharmacol. 2016 Jun;173(12):1899-910 - PubMed

References

    1. Ann N Y Acad Sci. 1999;893:154-75 - PubMed

References

    1. Int J Tryptophan Res. 2012;5:1-8 - PubMed

References

    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed

References

    1. Bioorg Med Chem Lett. 2000 Dec 4;10(23):2613-6 - PubMed

References

    1. Neuropharmacology. 2004 Mar;46(4):541-54 - PubMed

LinkOut - more resources

Feedback