Caveolin-1 enhances brain metastasis of non-small cell lung cancer, potentially in association with the epithelial-mesenchymal transition marker SNAIL

Cancer Cell Int. 2019 Jun 28:19:171. doi: 10.1186/s12935-019-0892-0. eCollection 2019.

Abstract

Background: Caveolin-1 (Cav-1) plays an important role in the development of various human cancers. We investigated the relationship between Cav-1 expression and non-small cell lung cancer (NSCLC) progression in the context of brain metastasis (BM).

Methods: Cav-1 expression was investigated in a series of 102 BM samples and 49 paired primary NSCLC samples, as well as 162 unpaired primary NSCLC samples with (63 cases) or without (99 cases) metastasis to distant organs. Human lung cancer cell lines were used for in vitro functional analysis.

Results: High Cav-1 expression in tumor cells was observed in 52% (38/73) of squamous cell carcinomas (SQCs) and 33% (45/138) of non-SQCs. In SQC, high Cav-1 expression was increased after BM in both paired and unpaired samples of lung primary tumors and BM (53% vs. 84% in paired samples, P = 0.034; 52% vs. 78% in unpaired samples, P = 0.020). Although the difference in median overall survival in patients NSCLC was not statistically significant, high Cav-1 expression in tumor cells (P = 0.005, hazard ratio 1.715, 95% confidence index 1.175-2.502) was independent prognostic factors of overall survival on multivariate Cox regression analyses, in addition to the presence of BM and non-SQC type. In vitro assays revealed that Cav-1 knockdown inhibited the invasion and migration of lung cancer cells. Genetic modulation of Cav-1 was consistently associated with SNAIL up- and down-regulation. These findings were supported by increased SNAIL and Cav-1 expression in BM samples of SQC.

Conclusions: Cav-1 plays an important role in the BM of NSCLC, especially in SQC. The mechanism may be linked to SNAIL regulation.

Keywords: Brain metastasis; Caveolin-1; Epithelial-mesenchymal transition; Non-small cell lung cancer; SNAIL.