Higher-Order Quantum Ghost Imaging with Ultracold Atoms

Phys Rev Lett. 2019 Jun 14;122(23):233601. doi: 10.1103/PhysRevLett.122.233601.

Abstract

Ghost imaging is a quantum optics technique that uses correlations between two beams to reconstruct an image from photons that do not interact with the object being imaged. While pairwise (second-order) correlations are usually used to create the ghost image, higher-order correlations can be utilized to improve the performance. In this Letter, we demonstrate higher-order atomic ghost imaging, using entangled ultracold metastable helium atoms from an s-wave collision halo. We construct higher-order ghost images up to fifth order and show that using higher-order correlations can improve the visibility of the images without impacting the resolution. This is the first demonstration of higher-order ghost imaging with massive particles and the first higher-order ghost imaging protocol of any type using a quantum source.