Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 15:691:16-35.
doi: 10.1016/j.scitotenv.2019.07.086. Epub 2019 Jul 8.

On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India

Affiliations

On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India

Purushottam Kumar Garg et al. Sci Total Environ. .

Abstract

This study evaluates multiple glacier parameters (length, area, debris cover, snowline altitude (SLA), glacial lakes, velocity, and surface elevation change) to comprehend the response of poorly understood glaciers of the Sikkim Himalaya to climate change. For the proposed task, 23 representative glaciers were selected from the region, and remotely acquired data from Landsat-TM/ETM/OLI (1991-2017), and Terra-ASTER (2007-2017) along with the SRTM DEMs were used for extraction of the various parameters. Results show that during 1991-2015 the studied glaciers have significantly retreated (17.78 ± 2.06 m a-1), deglaciated (5.44 ± 0.87%), and experienced a considerable increase in SLA (~7 m a-1) and debris cover (16.49 ± 2.96%). Glaciers slowed-down (by 24.90%) with sizable growth in number (23.81%) and area (48.78 ± 2.23%) of glacial lakes. They also exhibit a notable downwasting (-0.77 ± 0.08 m a-1) during 2000-2007/17. The behavior of glaciers in the region is heterogeneous and found to be primarily determined by glacier size, debris cover and glacial lakes. Though a generalized mass loss is observed for both small- (<3 km2) and large-sized glaciers (>10 km2), they seem to adopt different mechanisms to cope with the ongoing climatic changes. While the first adjust mostly by retreat/deglaciation, the latter lose mass through downwasting. Comparing with other Himalayan regions, the magnitude of dimensional changes and debris growth are higher in the Sikkim. The SLA trends are comparable with the central and western Himalaya up to 2000, but a reverse trend is seen afterwards. Also, contrary to the western and central Himalaya, where glaciers are reported to have slowed-down in recent decade, the Sikkim glaciers have shown negligible deceleration after 2000. Climate analysis confirm almost double increase in summer temperature (24.47%) than winters (12.77%) during 1990-2016, which, given the 'summer-accumulation-type' nature of the Sikkim glaciers, seems to be the prime driver of the observed changes.

Keywords: Climate change; Eastern Himalaya; Glacial lakes; Glacier wastage; Multiparametric glacier monitoring; Remote sensing.

PubMed Disclaimer

Similar articles

LinkOut - more resources