Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base

J Am Chem Soc. 2019 Aug 7;141(31):12202-12206. doi: 10.1021/jacs.9b05261. Epub 2019 Jul 24.

Abstract

Amide synthesis is one of the most important transformations in chemistry and biology. The direct use of ammonia for the incorporation of nitrogen functionalities in organic molecules is an attractive and environmentally benign method. We present here a new synthesis of amides by acceptorless dehydrogenative coupling of benzyl alcohols and ammonia. The reaction is catalyzed by a pincer complex of earth-abundant manganese in the presence of a stoichiometric base, making the overall process economical, efficient, and sustainable. Interesting mechanistic insights based on detailed experimental observations, indicating the crucial role of the base, are provided.

Publication types

  • Research Support, Non-U.S. Gov't