Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels

Acta Biomater. 2019 Sep 15:96:354-367. doi: 10.1016/j.actbio.2019.07.010. Epub 2019 Jul 16.


Valve interstitial cells (VIC) are the primary cell type residing within heart valve tissues. In many valve pathologies, VICs become activated and will subsequently profoundly remodel the valve tissue extracellular matrix (ECM). A primary indicator of VIC activation is the upregulation of α-smooth muscle actin (αSMA) stress fibers, which in turn increase VIC contractility. Thus, contractile state reflects VIC activation and ECM biosynthesis levels. In general, cell contraction studies have largely utilized two-dimensional substrates, which are a vastly different micro mechanical environment than 3D native leaflet tissue. To address this limitation, hydrogels have been a popular choice for studying cells in a three-dimensional environment due to their tunable properties and optical transparency, which allows for direct cell visualization. In the present study, we extended the use of hydrogels to study the active contractile behavior of VICs. Aortic VICs (AVIC) were encapsulated within poly(ethylene glycol) (PEG) hydrogels and were subjected to flexural-deformation tests to assess the state of AVIC contraction. Using a finite element model of the experimental setup, we determined the effective shear modulus μ of the constructs. An increase in μ resulting from AVIC active contraction was observed. Results further indicated that AVIC contraction had a more pronounced effect on μ in softer gels (72 ± 21% increase in μ within 2.5 kPa gels) and was dependent upon the availability of adhesion sites (0.5-1 mM CRGDS). The transparency of the gel allowed us to image AVICs directly within the hydrogel, where we observed a time-dependent decrease in volume (time constant τ=3.04 min) when the AVICs were induced into a hypertensive state. Our results indicated that AVIC contraction was regulated by both the intrinsic (unseeded) gel stiffness and the CRGDS peptide concentrations. This finding suggests that AVIC contractile state can be profoundly modulated through their local micro environment using modifiable PEG gels in a 3D micromechanical-emulating environment. Moving forward, this approach has the potential to be used towards delineating normal and diseased VIC biomechanical properties using highly tunable PEG biomaterials. STATEMENT OF SIGNIFICANCE.

Keywords: Beam bending; Cell contraction; Cell-material interactions; Heart valve interstitial cell; Mechanobiology; Poly (ethylene glycol) hydrogel.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Extracellular Matrix / chemistry*
  • Heart Valves / cytology
  • Heart Valves / metabolism*
  • Hydrogels / chemistry*
  • Interstitial Cells of Cajal / cytology
  • Interstitial Cells of Cajal / metabolism*
  • Muscle Contraction*
  • Polyethylene Glycols / chemistry*
  • Swine


  • Hydrogels
  • Polyethylene Glycols