Aims: It is hypothesized that dorsal root ganglion stimulation (DRGS), sharing some of the mechanisms of traditional spinal cord stimulation (SCS) of the dorsal columns, induces γ-aminobutyric acid (GABA) release from interneurons in the spinal dorsal horn.
Methods: We used quantitative immunohistochemical analysis in order to investigate the effect of DRGS on intensity of intracellular GABA-staining levels in the L4-L6 spinal dorsal horn of painful diabetic polyneuropathy (PDPN) animals. To establish the maximal pain relieving effect, we tested for mechanical hypersensitivity to von Frey filaments and animals received 30 minutes of DRGS at day 3 after implantation of the electrode. One day later, 4 Sham-DRGS animals and four responders-to-DRGS received again 30 minutes of DRGS and were perfused at the peak of DRGS-induced pain relief.
Results: No significant difference in GABA-immunoreactivity was observed between DRGS and Sham-DRGS in lamina 1-3 of the spinal levels L4-6 neither ipsilaterally nor contralaterally.
Conclusions: Dorsal root ganglion stimulation does not induce GABA release from the spinal dorsal horn cells, suggesting that the mechanisms underlying DRGS in pain relief are different from those of conventional SCS. The modulation of a GABA-mediated "Gate Control" in the DRG itself, functioning as a prime Gate of nociception, is suggested and discussed.
Keywords: animal model; dorsal horn; dorsal root ganglion stimulation; painful diabetic polyneuropathy; rats; spinal cord; γ-aminobutyric acid.
© 2019 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.