Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells

Nat Commun. 2019 Jul 24;10(1):3307. doi: 10.1038/s41467-019-11190-0.

Abstract

Current therapies for most neurodegenerative disorders are only symptomatic in nature and do not change the course of the disease. Gene therapy plays an important role in disease modifying therapeutic strategies. Herein, we have designed and optimized a series of highly branched poly(β-amino ester)s (HPAEs) containing biodegradable disulfide units in the HPAE backbone (HPAESS) and guanidine moieties (HPAESG) at the extremities. The optimized polymers are used to deliver minicircle DNA to multipotent adipose derived stem cells (ADSCs) and astrocytes, and high transfection efficiency is achieved (77% in human ADSCs and 52% in primary astrocytes) whilst preserving over 90% cell viability. Furthermore, the top-performing candidate mediates high levels of nerve growth factor (NGF) secretion from astrocytes, causing neurite outgrowth from a model neuron cell line. This synergistic gene delivery system provides a viable method for highly efficient non-viral transfection of ADSCs and astrocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astrocytes / metabolism
  • Genetic Therapy / methods
  • Humans
  • Mesenchymal Stem Cells
  • Nerve Growth Factor / metabolism
  • Neurodegenerative Diseases / genetics*
  • Neurodegenerative Diseases / therapy
  • Polymers / chemistry
  • Transfection / methods*

Substances

  • Polymers
  • poly(beta-amino ester)
  • Nerve Growth Factor