A systematic study of injectable anesthetic agents in the brown anole lizard (Anolis sagrei )

Lab Anim. 2020 Jun;54(3):281-294. doi: 10.1177/0023677219862841. Epub 2019 Jul 26.

Abstract

Anolis lizards have served as important research models in fields ranging from evolution and ecology to physiology and biomechanics. However, anoles are also emerging as important models for studies of embryo development and tissue regeneration. The increased use of anoles in the laboratory has produced a need to establish effective methods of anesthesia, both for routine veterinary procedures and for research procedures. Therefore, we tested the efficacy of different anesthetic treatments in adult female Anolis sagrei. Alfaxalone, dexmedetomidine, hydromorphone, ketamine and tribromoethanol were administered subcutaneously (SC), either alone or combined at varying doses in a total of 64 female anoles. Drug induction time, duration, anesthesia level and adverse effects were assessed. Differences in anesthesia level were observed depending on injection site and drug combination. Alfaxalone/dexmedetomidine and tribromoethanol/dexmedetomidine were the most effective drug combinations for inducing a surgical plane of anesthesia in anoles. Brown anoles injected SC with alfaxalone (30 mg/kg) plus dexmedetomidine (0.1 mg/kg) or with tribromoethanol (400 mg/kg) plus dexmedetomidine (0.1 mg/kg) experienced mean durations of surgical anesthesia levels of 31.2 ± 5.3 and 87.5 ± 19.8 min with full recovery after another 10.9 ± 2.9 and 46.2 ± 41.8 min, respectively. Hydromorphone given with alfaxalone/dexmedetomidine resulted in deep anesthesia with respiratory depression, while ketamine/hydromorphone/dexmedetomidine produced only light to moderate sedation. We determined that alfaxalone/dexmedetomidine or tribromoethanol/dexmedetomidine combinations were sufficient to maintain a lizard under general anesthesia for coeliotomy. This study represents a significant step towards understanding the effects of anesthetic agents in anole lizards and will benefit both veterinary care and research on these animals.

Keywords: Anolis; alfaxalone; anesthesia; dexmedetomidine; lizard; tribromoethanol.

MeSH terms

  • Anesthetics / administration & dosage*
  • Animals
  • Conscious Sedation / methods*
  • Female
  • Injections, Subcutaneous*
  • Lizards / physiology*
  • Pain Management / methods*
  • Random Allocation

Substances

  • Anesthetics