Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
- PMID: 31346296
- PMCID: PMC6748873
- DOI: 10.1038/s41593-019-0443-y
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
Abstract
Direction-selective neurons respond to visual motion in a preferred direction. They are direction-opponent if they are also inhibited by motion in the opposite direction. In flies and vertebrates, direction opponency has been observed in second-order direction-selective neurons, which achieve this opponency by subtracting signals from first-order direction-selective cells with opposite directional tunings. Here, we report direction opponency in Drosophila that emerges in first-order direction-selective neurons, the elementary motion detectors T4 and T5. This opponency persists when synaptic output from these cells is blocked, suggesting that it arises from feedforward, not feedback, computations. These observations exclude a broad class of linear-nonlinear models that have been proposed to describe direction-selective computations. However, they are consistent with models that include dynamic nonlinearities. Simulations of opponent models suggest that direction opponency in first-order motion detectors improves motion discriminability by suppressing noise generated by the local structure of natural scenes.
Figures
Similar articles
-
How fly neurons compute the direction of visual motion.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):109-124. doi: 10.1007/s00359-019-01375-9. Epub 2019 Nov 5. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020. PMID: 31691093 Free PMC article. Review.
-
Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression.J Neurosci. 2016 Aug 3;36(31):8078-92. doi: 10.1523/JNEUROSCI.1272-16.2016. J Neurosci. 2016. PMID: 27488629 Free PMC article.
-
A directional tuning map of Drosophila elementary motion detectors.Nature. 2013 Aug 8;500(7461):212-6. doi: 10.1038/nature12320. Nature. 2013. PMID: 23925246
-
Neuronal circuits integrating visual motion information in Drosophila melanogaster.Curr Biol. 2022 Aug 22;32(16):3529-3544.e2. doi: 10.1016/j.cub.2022.06.061. Epub 2022 Jul 14. Curr Biol. 2022. PMID: 35839763
-
How Flies See Motion.Annu Rev Neurosci. 2023 Jul 10;46:17-37. doi: 10.1146/annurev-neuro-080422-111929. Annu Rev Neurosci. 2023. PMID: 37428604 Review.
Cited by
-
Humans can use positive and negative spectrotemporal correlations to detect rising and falling pitch.bioRxiv [Preprint]. 2024 Nov 21:2024.08.03.606481. doi: 10.1101/2024.08.03.606481. bioRxiv. 2024. PMID: 39131316 Free PMC article. Preprint.
-
Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection.iScience. 2023 Sep 14;26(10):107928. doi: 10.1016/j.isci.2023.107928. eCollection 2023 Oct 20. iScience. 2023. PMID: 37810236 Free PMC article.
-
Excitatory and inhibitory neural dynamics jointly tune motion detection.Curr Biol. 2022 Sep 12;32(17):3659-3675.e8. doi: 10.1016/j.cub.2022.06.075. Epub 2022 Jul 21. Curr Biol. 2022. PMID: 35868321 Free PMC article.
-
Broken time reversal symmetry in visual motion detection.bioRxiv [Preprint]. 2024 Jun 10:2024.06.08.598068. doi: 10.1101/2024.06.08.598068. bioRxiv. 2024. PMID: 38915608 Free PMC article. Preprint.
-
Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes.Elife. 2019 Oct 15;8:e47579. doi: 10.7554/eLife.47579. Elife. 2019. PMID: 31613221 Free PMC article.
References
Citations
-
- Hausen K Motion sensitive interneurons in the optomotor system of the fly. Biol. Cybern. 45, 143–156 (1982).
-
- Joesch M, Plett J, Borst A & Reiff D Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
