IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson's disease

Brain Behav Immun. 2019 Oct:81:630-645. doi: 10.1016/j.bbi.2019.07.026. Epub 2019 Jul 24.

Abstract

Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia. Mouse and rat models for PD were prepared by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or striatal injection of 1-methyl-4-phenylpyridinium (MPP+), respectively. Both in MPTP-treated mice and MPP+-treated rats, blood-brain barrier (BBB) was disrupted and IL-17A level increased in the SN but not in cortex. Effector T (Teff) cells that were adoptively transferred via tail veins infiltrated into the brain of PD mice but not into that of normal mice. The Teff cell transfer aggravated nigrostriatal dopaminergic neurodegeneration, microglial activation and motor impairment. Contrarily, IL-17A deficiency alleviated BBB disruption, dopaminergic neurodegeneration, microglial activation and motor impairment. Anti-IL-17A-neutralizing antibody that was injected into lateral cerebral ventricle in PD rats ameliorated the manifestations mentioned above. IL-17A activated microglia but did not directly affect dopaminergic neuronal survival in vitro. IL-17A exacerbated dopaminergic neuronal loss only in the presence of microglia, and silencing IL-17A receptor gene in microglia abolished the IL-17A effect. IL-17A-treated microglial medium that contained higher concentration of tumor necrosis factor (TNF)-α facilitated dopaminergic neuronal death. Further, TNF-α-neutralizing antibody attenuated MPP+-induced neurotoxicity. The findings suggest that IL-17A accelerates neurodegeneration in PD depending on microglial activation and at least partly TNF-α release.

Keywords: Dopaminergic neurons; Interleukin-17A; Microglia; Neurodegeneration; Neuroinflammation; Parkinson's disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Methyl-4-phenylpyridinium / pharmacology
  • Animals
  • Cell Death / immunology
  • Corpus Striatum / immunology
  • Disease Models, Animal
  • Dopamine / immunology
  • Dopaminergic Neurons / immunology
  • Interleukin-17 / immunology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microglia / immunology*
  • Nerve Degeneration / immunology
  • Nerve Degeneration / pathology
  • Neurodegenerative Diseases / immunology
  • Neurodegenerative Diseases / pathology
  • Neuroimmunomodulation / immunology
  • Parkinson Disease / immunology*
  • Rats
  • Rats, Sprague-Dawley
  • Substantia Nigra / immunology
  • Th17 Cells / immunology
  • Tumor Necrosis Factor-alpha / metabolism
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • Il17a protein, mouse
  • Interleukin-17
  • Tumor Necrosis Factor-alpha
  • Tyrosine 3-Monooxygenase
  • 1-Methyl-4-phenylpyridinium
  • Dopamine