Recent morphologic and functional techniques for the study of nerve cells, such as intracellular injection and neurotransmitter immunohistochemistry, allow a new approach to the functional architecture of the retinal circuitry. Two types of dopaminergic cells are described: amacrine cells and interplexiform cells. These latter cells, which send processes to both the inner and outer plexiform layers, form a feedback loop acting at the level of horizontal cell coupling. Two molecules localized in such cells, dopamine and GABA, have antagonistic effects on horizontal cell coupling and regulate the diameter of their receptive fields which code for contrast. Changes in the ERG, VEPs and contrast sensitivity occur in Parkinsonian patients and are identical to those observed in animal models whose dopaminergic retinal system has been destroyed, thus suggesting a degenerative process of this system in Parkinson's disease. The observation of dopamine neurons, labelled by their tyrosine hydroxylase immunoreactivity, in the retina of 5 patients, led to the observation of reduced dopamine innervation in the central retina of Parkinsonian patients.