Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct:219:119340.
doi: 10.1016/j.biomaterials.2019.119340. Epub 2019 Jul 19.

Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors

Affiliations

Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors

Jingjing Gan et al. Biomaterials. 2019 Oct.

Abstract

The rate-limiting step in cutaneous wound healing, namely, the transition from inflammation to cell proliferation, depends on the high plasticity of macrophages to prevent inflammation in the wound tissues in a timely manner. Thus, strategies that reprogram inflammatory macrophages may improve the healing of poor wounds, particularly in the aged skin of individuals with diabetes or other chronic diseases. As shown in our previous study, KGM-modified SiO2 nanoparticles (KSiNPs) effectively activate macrophages to differentiate into the M2-type phenotype by inducing mannose receptor (MR) clustering on the cell surface. Here, we assess whether KSiNPs accelerate wound healing following acute or chronic skin injury. Using a full-thickness excision model in either diabetic mice or healthy mice, the wounds treated with KSiNPs displayed a dramatically increased closure rate and collagen production, along with decreased inflammation and increased angiogenesis in the regenerating tissues. Furthermore, KSiNPs induced the formation of M2-like macrophages by clustering MR on the cells. Accordingly, the cytokines produced by the KSiNP-treated macrophages were capable of inducing fibroblast proliferation and subsequent secretion of extracellular matrix (ECM). Based on these results, KSiNPs display great potential as an effective therapeutic approach for cutaneous wounds by effectively suppressing excessive or persistent inflammation and fibrosis.

Keywords: Macrophage; Mannose receptor; Receptor clustering; Wound healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources