Trimethylscandium

J Am Chem Soc. 2019 Sep 4;141(35):13931-13940. doi: 10.1021/jacs.9b06879. Epub 2019 Aug 20.

Abstract

The hitherto unknown homoleptic tetramethylaluminate complex [Sc(AlMe4)3] could be obtained by reacting the ate complex [Li3ScMe6(thf)1.2] with AlMe3 in the cold. It cocrystallizes with AlMe3 as [Sc(AlMe4)3(Al2Me6)0.5] and decomposes at ambient temperature in n-pentane via multiple C-H bond activations to the mixed methyl/methylidene complex [Sc33-CH2)22-CH3)3(AlMe4)2(AlMe3)2]. Donor-induced methylaluminate cleavage of [Sc(AlMe4)3(Al2Me6)0.5] produced [ScMe3]n in good yield, which could be derivatized with trimethyltriazacyclononane (Me3TACN) to form the structurally characterizable [(Me3TACN)ScMe3]. Additionally, half-sandwich complex [Cp*Sc(AlMe4)2] and sandwich complex [Cp*2Sc(AlMe4)] were accessible by salt metathesis reactions from [Sc(AlMe4)3(Al2Me6)0.5] and KCp* (Cp* = C5Me5). 45Sc NMR spectroscopy was applied as a significant probe to evidence the existence of [ScMe3]n. Compounds [(Me3TACN)ScMe3] (+624.6 ppm) and [ScMe3(thf)x] (+601.7 ppm) gave large 45Sc NMR shifts, revealing the strong deshielding effect of the σ-bonded alkyl ligands on the scandium nuclei. Ultimately, cationized [Sc(AlMe4)3(Al2Me6)0.5] was employed in isoprene polymerization, leading to polymers in high yields (>95%) and with high (>90%) cis-1,4-polyisoprene content.

Publication types

  • Research Support, Non-U.S. Gov't