Heartbeat Induces a Cortical Theta-Synchronized Network in the Resting State

eNeuro. 2019 Aug 8;6(4):ENEURO.0200-19.2019. doi: 10.1523/ENEURO.0200-19.2019. Print Jul/Aug 2019.

Abstract

In the resting state, heartbeats evoke cortical responses called heartbeat-evoked responses (HERs), which reflect cortical cardiac interoceptive processing. While previous studies have reported that the heartbeat evokes cortical responses at a regional level, whether the heartbeat induces synchronization between regions to form a network structure remains unknown. Using resting-state MEG data from 85 human subjects of both genders, we first showed that heartbeat increases the phase synchronization between cortical regions in the theta frequency but not in other frequency bands. This increase in synchronization between cortical regions formed a network structure called the heartbeat-induced network (HIN), which did not reflect artificial phase synchronization. In the HIN, the left inferior temporal gyrus and parahippocampal gyrus played a central role as hubs. Furthermore, the HIN was modularized, containing five subnetworks called modules. In particular, module 1 played a central role in between-module interactions in the HIN. Furthermore, synchronization within module 1 had a positive association with the mood of an individual. In this study, we show the existence of the HIN and its network properties, advancing the current understanding of cortical heartbeat processing and its relationship with mood, which was previously confined to region level.

Keywords: MEG; emotion; heartbeat-induced network; interoception; resting state network.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cerebral Cortex / physiology*
  • Cortical Synchronization*
  • Female
  • Heart / innervation
  • Heart / physiology
  • Heart Rate*
  • Humans
  • Magnetoencephalography
  • Male
  • Neural Pathways / physiology
  • Theta Rhythm*
  • Young Adult