Slow growth determines nonheritable antibiotic resistance in Salmonella enterica
- PMID: 31363068
- PMCID: PMC7206539
- DOI: 10.1126/scisignal.aax3938
Slow growth determines nonheritable antibiotic resistance in Salmonella enterica
Abstract
Bacteria can withstand killing by bactericidal antibiotics through phenotypic changes mediated by their preexisting genetic repertoire. These changes can be exhibited transiently by a large fraction of the bacterial population, giving rise to tolerance, or displayed by a small subpopulation, giving rise to persistence. Apart from undermining the use of antibiotics, tolerant and persistent bacteria foster the emergence of antibiotic-resistant mutants. Persister formation has been attributed to alterations in the abundance of particular proteins, metabolites, and signaling molecules, including toxin-antitoxin modules, adenosine triphosphate, and guanosine (penta) tetraphosphate, respectively. Here, we report that persistent bacteria form as a result of slow growth alone, despite opposite changes in the abundance of such proteins, metabolites, and signaling molecules. Our findings argue that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Conflict of interest statement
Figures
Comment in
-
Slow growth causes bacterial persistence.Sci Signal. 2019 Jul 30;12(592):eaay1167. doi: 10.1126/scisignal.aay1167. Sci Signal. 2019. PMID: 31363066 Review.
Similar articles
-
A Physiological Basis for Nonheritable Antibiotic Resistance.mBio. 2020 Jun 16;11(3):e00817-20. doi: 10.1128/mBio.00817-20. mBio. 2020. PMID: 32546621 Free PMC article. Review.
-
Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics.mBio. 2022 Jun 28;13(3):e0048022. doi: 10.1128/mbio.00480-22. Epub 2022 May 16. mBio. 2022. PMID: 35575513 Free PMC article.
-
The RNA-Binding Protein ProQ Promotes Antibiotic Persistence in Salmonella.mBio. 2022 Dec 20;13(6):e0289122. doi: 10.1128/mbio.02891-22. Epub 2022 Nov 21. mBio. 2022. PMID: 36409088 Free PMC article.
-
Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells.mBio. 2017 Dec 12;8(6):e01964-17. doi: 10.1128/mBio.01964-17. mBio. 2017. PMID: 29233898 Free PMC article.
-
Multidrug tolerance of biofilms and persister cells.Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6. Curr Top Microbiol Immunol. 2008. PMID: 18453274 Review.
Cited by
-
Protozoan predation enhances stress resistance and antibiotic tolerance in Burkholderia cenocepacia by triggering the SOS response.ISME J. 2024 Jan 8;18(1):wrae014. doi: 10.1093/ismejo/wrae014. ISME J. 2024. PMID: 38366016 Free PMC article.
-
The Chlamydia-related Waddlia chondrophila encodes functional type II toxin-antitoxin systems.Appl Environ Microbiol. 2024 Feb 21;90(2):e0068123. doi: 10.1128/aem.00681-23. Epub 2024 Jan 12. Appl Environ Microbiol. 2024. PMID: 38214519 Free PMC article.
-
Persister-mediated emergence of antimicrobial resistance in agriculture due to antibiotic growth promoters.AIMS Microbiol. 2023 Nov 13;9(4):738-756. doi: 10.3934/microbiol.2023038. eCollection 2023. AIMS Microbiol. 2023. PMID: 38173975 Free PMC article. Review.
-
Long-term evolution of antibiotic tolerance in Pseudomonas aeruginosa lung infections.Evol Lett. 2023 Sep 20;7(6):389-400. doi: 10.1093/evlett/qrad034. eCollection 2023 Dec. Evol Lett. 2023. PMID: 38045720 Free PMC article.
-
Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates: an in-vitro longitudinal study.bioRxiv [Preprint]. 2023 Nov 22:2023.11.22.568240. doi: 10.1101/2023.11.22.568240. bioRxiv. 2023. PMID: 38045287 Free PMC article. Preprint.
References
-
- Brauner A, Fridman O, Gefen O, Balaban NQ, Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol 14, 320–330 (2016). - PubMed
-
- Lewis K, Persister cells. Annu. Rev. Microbiol 64, 357–372 (2010). - PubMed
-
- Roth JR, Anderson DI, Amplification-mutagenesis—how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res. Microbiol 155, 342–351 (2004). - PubMed
-
- Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM, Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res. Microbiol 155, 352–359 (2004). - PubMed
-
- Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN, SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305, 1629–1631 (2004). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
