Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 54 (2), 190-197

Biomechanical Evidence on Anterior Cruciate Ligament Reconstruction

Affiliations

Biomechanical Evidence on Anterior Cruciate Ligament Reconstruction

António Completo et al. Rev Bras Ortop (Sao Paulo).

Abstract

Objective Anterior cruciate ligament (ACL) reconstruction is recommended in athletes with high physical demands. Several techniques are used in reconstruction; however, the most relevant question still is the best biomechanical positioning for the graft. The present study aimed to analyze the biomechanical effect of the position of bone tunnels on load distribution and joint kinetics, as well as the medium-term functional outcomes after ACL reconstruction. Methods A biomechanical study using a finite element model of the original knee (without anterior cruciate ligament rupture) and reconstruction of the ACL (neoACL) was performed in four combinations of bone tunnel positions (central femoral-central tibial, anterior femoral-central tibial, posterosuperior femoral-anterior tibial, and central femoral-anterior tibial) using the same type of graft. Each neo-ACL model was compared with the original knee model regarding cartilaginous contact pressure, femoral and meniscal rotation and translation, and ligamentous deformation. Results No neo-ACL model was able to fully replicate the original knee model. When the femoral tunnel was posteriorly positioned, cartilage pressures were 25% lower, and the mobility of the meniscus was 12 to 30% higher compared with the original knee model. When the femoral tunnel was in the anterior position, internal rotation was 50% lower than in the original knee model. Conclusion Results show that the femoral tunnel farther from the central position appears to be more suitable for a distinct behavior regarding the intact joint. The most anterior position increases rotational instability.

Keywords: anterior cruciate ligament; anterior cruciate ligament reconstruction; rupture.

Conflict of interest statement

Conflitos de interesse Os autores declaram não haver conflitos de interesse.

Figures

Fig. 1
Fig. 1
Geometric model of the intact knee (Open Knee Model).
Fig. 2
Fig. 2
Position of the bone tunnels in the analyzed tibia and femur. FC-TC, central femur and tibia; FA-TC, anterior femur and central tibia; FC-TA, central femur and anterior tibia; FPS-TAI, posterior-superior femur and anterior-internal tibia.
Fig. 3
Fig. 3
A, Finite element model of the knee (posterior view); B, Schematic representation of the forces and momentum applied to the joint; C, Location of the points AL, PL, AM, PM in which menisci displacements were measured.
Fig. 4
Fig. 4
A, Contact pressure gradients at the femoral and tibial cartilage; B, Maximum contact pressure at the femoral and tibial cartilage (0-60 o flexion).
Fig. 5
Fig. 5
Maximal femoral rotations in cross-sectional and frontal planes during a movement in flexion up to 60 o
Fig. 6
Fig. 6
A, Posterior femoral translation in up to 60 o flexion; B, Posterior meniscal translation at points AM, PM, AL and PL (Fig. 3) in up to 60 o flexion
Fig. 7
Fig. 7
Maximal main deformity (tension) on knee ligaments and neoACL in up to 60 o and 70 o to 100 o flexion
Fig. 1
Fig. 1
Modelo geométrico do joelho intacto (Open Knee Model).
Fig. 2
Fig. 2
Posição dos túneis ósseos na tíbia e no fêmur analisados. FC-TC, fêmur e tíbia centrais; FA-TC, fêmur anterior e tíbia central; FC-TA, fêmur central e tíbia anterior; FPS-TAI, fêmur posterossuperior e tíbia posição anterointerna.
Fig. 3
Fig. 3
A, modelo de elemento finitos do joelho (vista posterior); B, representação esquemática das forças e do momento aplicados à articulação; C, localização dos pontos AL, PL, AM, PM onde foram medidos os deslocamentos dos meniscos.
Fig. 4
Fig. 4
A, gradientes de pressão de contato na cartilagem femoral e tibial; B, máxima pressão de contato nas cartilagens femoral e tibial (flexão 0-60∘).
Fig. 5
Fig. 5
Rotações máximas no plano transverso e plano frontal do fêmur durante o movimento durante o movimento de flexão até 60∘.
Fig. 6
Fig. 6
A, translação posterior do fêmur na flexão até 60∘; B, translação posterior dos meniscos nos pontos AM, PM, AL e PL ( Fig. 3 ) na flexão até 60∘.
Fig. 7
Fig. 7
Deformação principal máxima (tração) nos ligamentos e neoligamento LCA do joelho na flexão até 60∘ e na flexão de 70∘ a 100∘.

Similar articles

See all similar articles

References

    1. Carnes J, Stannus O, Cicuttini F, Ding C, Jones G. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage. 2012;20(12):1541–1547. - PubMed
    1. Completo A, Fonseca F. Porto: Publindustria; 2011. Fundamentos de biomecânica musculoesquelética e ortopédica.
    1. Erdemir A, Sibole S. A three-dimensional finite element representation of the knee joint 2010. In: User's Guide. Version 1.0.0
    1. Sibole S, Bennetts C, Maas S. Open knee: a 3 d finite element representation of the knee jointIn: 34th Annual Meeting of the American Society of Biomechanics, Providence, RI from Wednesday, August 18,2010
    1. Noronha J C. Porto: Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; 2000. Ligamento cruzado anterior [tese]
Feedback