Lasing action in low-resistance nanolasers based on tunnel junctions

Opt Lett. 2019 Aug 1;44(15):3669-3672. doi: 10.1364/OL.44.003669.

Abstract

We experimentally demonstrate the lasing action of a new nanolaser design with a tunnel junction. By using a heavily doped tunnel junction for hole injection, we can replace the p-type contact material of a conventional nanolaser diode with a low-resistance n-type contact layer. This leads to a significant reduction of the device resistance and lowers the threshold voltage from 5 V to around 0.95 V at 77 K. The lasing behavior is verified by the light output versus the injection current (L-I) characterization and second-order coherence function measurements. Because of less Joule heating during current injection, the nanolaser can be operated at temperatures as high as 180 K under CW pumping. The incorporation of heavily doped tunnel junctions may pave the way for other nanoscale cavity design for improved heat management.