Robustness on interdependent networks with a multiple-to-multiple dependent relationship

Chaos. 2019 Jul;29(7):073107. doi: 10.1063/1.5093074.

Abstract

Interdependent networks as an important structure of the real system not only include one-to-one dependency relationship but also include more realistic undirected multiple interdependent relationship. The study on interdependent networks plays an important role in designing more resilient real systems. Here, we mainly focus on the case of interdependent networks with a multiple-to-multiple correspondence of interdependent nodes by generalizing feedback and nonfeedback conditions. We develop a new mathematical framework and study numerically and analytically the percolation of interdependent networks with partial multiple-to-multiple dependency links by using percolation theory. By analyzing the process of cascading failure, the size of the giant component and the critical threshold are analytically obtained and testified by simulation results for couple Erdös-Re˙nyi and scale-free networks. The results imply that the system shows a discontinuous phase transition for different coupling strengths. We find that the system becomes more resilient and easy to defend by increasing the coupling strength and the connectivity density. Our model has the potential to shed light on designing more resilient real-world dependent systems.