Detecting undetectables: Can conductances of action potential models be changed without appreciable change in the transmembrane potential?
- PMID: 31370420
- DOI: 10.1063/1.5087629
Detecting undetectables: Can conductances of action potential models be changed without appreciable change in the transmembrane potential?
Abstract
Mathematical models describing the dynamics of the cardiac action potential are of great value for understanding how changes to the system can disrupt the normal electrical activity of cells and tissue in the heart. However, to represent specific data, these models must be parameterized, and adjustment of the maximum conductances of the individual contributing ionic currents is a commonly used method. Here, we present a method for investigating the uniqueness of such resulting parameterizations. Our key question is: Can the maximum conductances of a model be changed without giving any appreciable changes in the action potential? If so, the model parameters are not unique and this poses a major problem in using the models to identify changes in parameters from data, for instance, to evaluate potential drug effects. We propose a method for evaluating this uniqueness, founded on the singular value decomposition of a matrix consisting of the individual ionic currents. Small singular values of this matrix signify lack of parameter uniqueness and we show that the conclusion from linear analysis of the matrix carries over to provide insight into the uniqueness of the parameters in the nonlinear case. Using numerical experiments, we quantify the identifiability of the maximum conductances of well-known models of the cardiac action potential. Furthermore, we show how the identifiability depends on the time step used in the observation of the currents, how the application of drugs may change identifiability, and, finally, how the stimulation protocol can be used to improve the identifiability of a model.
Similar articles
-
Parameter estimation in cardiac ionic models.Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):407-31. doi: 10.1016/j.pbiomolbio.2004.02.002. Prog Biophys Mol Biol. 2004. PMID: 15142755
-
Efficient parameterization of cardiac action potential models using a genetic algorithm.Chaos. 2017 Sep;27(9):093922. doi: 10.1063/1.5000354. Chaos. 2017. PMID: 28964158
-
A response surface optimization approach to adjust ionic current conductances of cardiac electrophysiological models. Application to the study of potassium level changes.PLoS One. 2018 Oct 3;13(10):e0204411. doi: 10.1371/journal.pone.0204411. eCollection 2018. PLoS One. 2018. PMID: 30281636 Free PMC article.
-
[Computer simulations of electrical activity of the heart].Usp Fiziol Nauk. 2010 Jul-Sep;41(3):44-63. Usp Fiziol Nauk. 2010. PMID: 20865937 Review. Russian.
-
Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?Animal. 2018 Apr;12(4):701-712. doi: 10.1017/S1751731117002774. Epub 2017 Nov 3. Animal. 2018. PMID: 29096725 Review.
Cited by
-
Reducing complexity and unidentifiability when modelling human atrial cells.Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190339. doi: 10.1098/rsta.2019.0339. Epub 2020 May 25. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32448063 Free PMC article.
-
Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies.Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911. Elife. 2024. PMID: 38598284 Free PMC article.
-
Ion channel model reduction using manifold boundaries.J R Soc Interface. 2022 Aug;19(193):20220193. doi: 10.1098/rsif.2022.0193. Epub 2022 Aug 10. J R Soc Interface. 2022. PMID: 35946166 Free PMC article.
-
Computational prediction of drug response in short QT syndrome type 1 based on measurements of compound effect in stem cell-derived cardiomyocytes.PLoS Comput Biol. 2021 Feb 16;17(2):e1008089. doi: 10.1371/journal.pcbi.1008089. eCollection 2021 Feb. PLoS Comput Biol. 2021. PMID: 33591962 Free PMC article.
-
Identifying Drug Response by Combining Measurements of the Membrane Potential, the Cytosolic Calcium Concentration, and the Extracellular Potential in Microphysiological Systems.Front Pharmacol. 2021 Feb 8;11:569489. doi: 10.3389/fphar.2020.569489. eCollection 2020. Front Pharmacol. 2021. PMID: 33628168 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
