Ankle Mechanical Impedance During Waling in Chronic Stroke: Preliminary Results

IEEE Int Conf Rehabil Robot. 2019 Jun:2019:246-251. doi: 10.1109/ICORR.2019.8779436.

Abstract

Dynamic joint mechanics, collectively known as mechanical impedance, are often altered following upper motoneuron disease, which can hinder mobility for these individuals. Typically, assessments of altered limb mechanics are obtained while the patient is at rest, which differs from the dynamic conditions of mobility. The purpose of this study was to quantify ankle impedance during walking in individuals post-stroke, determine differences from the healthy population, and assess the relationship between impedance impairment and clinical outcome measures. Preliminary data were collected in four individuals post-stroke. Displacement perturbations were applied to the ankle during stance phase, and least-squares system identification was performed to estimate ankle impedance. In comparison to the healthy population, the paretic ankle showed reduced variation of stiffness during mid-stance of walking, and damping estimates during early and mid-stance were increased. Clinical measures obtained during dynamic tasks showed strong correlation with changes to the stiffness component of impedance, while clinical measures obtained passively were not correlated to stiffness. Impairment in ankle damping was not correlated with any of the measures tested. This work provides novel, preliminary insight into paretic ankle impedance during walking, differences from healthy data, and elucidates how current clinical metrics correspond to the true values of ankle stiffness and damping during gait.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Ankle / physiopathology*
  • Chronic Disease
  • Electric Impedance*
  • Female
  • Humans
  • Male
  • Stroke / physiopathology*
  • Torque
  • Walking / physiology*