Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion

Nat Biotechnol. 2019 Aug;37(8):925-936. doi: 10.1038/s41587-019-0206-z. Epub 2019 Aug 2.

Abstract

Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bone Marrow Cells / metabolism*
  • Cell Line
  • Chromatin / chemistry*
  • Computer Simulation
  • Gene Expression Regulation
  • Hematopoiesis
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Leukocytes, Mononuclear
  • Single-Cell Analysis / methods*
  • T-Lymphocytes / metabolism*
  • Transcription Factors / metabolism

Substances

  • Chromatin
  • Transcription Factors