Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer

Breast Cancer Res Treat. 2019 Nov;178(2):263-274. doi: 10.1007/s10549-019-05380-z. Epub 2019 Aug 6.

Abstract

Purpose: Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for effective treatment of the refractory TNBC subtype.

Methods: A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC cells, revealing resistance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation.

Results: The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment.

Conclusions: mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-targeted therapy resistance in TNBC cells.

Keywords: Drug resistance; Multi-kinase inhibitor; Polypharmacology; Triple-negative breast cancer (TNBC); mTOR-targeted therapy.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Biomarkers
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Resistance, Neoplasm*
  • Drug Screening Assays, Antitumor
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Female
  • Humans
  • Phosphorylation
  • Protein Kinase Inhibitors / pharmacology*
  • Protein Kinase Inhibitors / therapeutic use
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • Triple Negative Breast Neoplasms / drug therapy
  • Triple Negative Breast Neoplasms / metabolism*

Substances

  • Antineoplastic Agents
  • Biomarkers
  • Protein Kinase Inhibitors
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases