Molecular architecture of lineage allocation and tissue organization in early mouse embryo

Nature. 2019 Aug;572(7770):528-532. doi: 10.1038/s41586-019-1469-8. Epub 2019 Aug 7.


During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Cell Cycle Proteins / metabolism
  • Cell Differentiation
  • Cell Lineage*
  • Embryo, Mammalian / cytology*
  • Embryo, Mammalian / embryology*
  • Embryo, Mammalian / metabolism
  • Embryonic Development
  • Gene Expression Regulation, Developmental
  • Germ Layers / cytology
  • Germ Layers / embryology
  • Germ Layers / metabolism
  • Hippo Signaling Pathway
  • Mice
  • Mice, Inbred C57BL
  • Protein Serine-Threonine Kinases / metabolism
  • Regulon / genetics
  • Signal Transduction
  • Transcriptome / genetics
  • YAP-Signaling Proteins


  • Adaptor Proteins, Signal Transducing
  • Cell Cycle Proteins
  • YAP-Signaling Proteins
  • Yap1 protein, mouse
  • Protein Serine-Threonine Kinases