The role of the posterior parietal cortex in coordinate transformations for visual-motor integration

Can J Physiol Pharmacol. 1988 Apr;66(4):488-501. doi: 10.1139/y88-078.

Abstract

Lesion to the posterior parietal cortex in monkeys and humans produces spatial deficits in movement and perception. In recording experiments from area 7a, a cortical subdivision in the posterior parietal cortex in monkeys, we have found neurons whose responses are a function of both the retinal location of visual stimuli and the position of the eyes in the orbits. By combining these signals area 7 a neurons code the location of visual stimuli with respect to the head. However, these cells respond over only limited ranges of eye positions (eye-position-dependent coding). To code location in craniotopic space at all eye positions (eye-position-independent coding) an additional step in neural processing is required that uses information distributed across populations of area 7a neurons. We describe here a neural network model, based on back-propagation learning, that both demonstrates how spatial location could be derived from the population response of area 7a neurons and accurately accounts for the observed response properties of these neurons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / physiology*
  • Computer Simulation
  • Eye
  • Haplorhini
  • Models, Neurological
  • Motor Neurons / physiology*
  • Parietal Lobe / physiology*
  • Space Perception / physiology
  • Visual Perception / physiology*