Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 11 (8)

Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence


Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence

Vasanti S Malik et al. Nutrients.


Sugar-sweetened beverages (SSBs) have little nutritional value and a robust body of evidence has linked the intake of SSBs to weight gain and risk of type 2 diabetes (T2D), cardiovascular disease (CVD), and some cancers. Metabolic Syndrome (MetSyn) is a clustering of risk factors that precedes the development of T2D and CVD; however, evidence linking SSBs to MetSyn is not clear. To make informed recommendations about SSBs, new evidence needs to be considered against existing literature. This review provides an update on the evidence linking SSBs and cardiometabolic outcomes including MetSyn. Findings from prospective cohort studies support a strong positive association between SSBs and weight gain and risk of T2D and coronary heart disease (CHD), independent of adiposity. Associations with MetSyn are less consistent, and there appears to be a sex difference with stroke with greater risk in women. Findings from short-term trials on metabolic risk factors provide mechanistic support for associations with T2D and CHD. Conclusive evidence from cohort studies and trials on risk factors support an etiologic role of SSB in relation to weight gain and risk of T2D and CHD. Continued efforts to reduce intake of SSB should be encouraged to improve the cardiometabolic health of individuals and populations.

Keywords: cardiometabolic risk; cardiovascular disease; metabolic syndrome; sugar-sweetened beverages; type 2 diabetes; weight gain.

Conflict of interest statement

V.S.M. is on a pro bono retainer for expert support for the Center for Science in the Public Interest in litigation related to sugar-sweetened beverages, and served as a consultant for the City of San Francisco for a case related to health warning labels on soda. There are no other financial or personal conflicts of interest to disclose that are related to the contents of this paper.


Figure 1
Figure 1
Sales of sugar-sweetened beverages (SSBs) in kcal per person per day by beverage type in 2009–2014 in selected countries. Data from Euromonitor Passport International, which were obtained from nutrition fact panels and websites of sugar-sweetened beverage companies; kcal = kilocalories [18].
Figure 2
Figure 2
Prospective associations for an incremental increase in beverage consumption with incident type 2 diabetes (T2D): random effects meta-analysis. * Unadjusted for adiposity; † adjusted for adiposity; ‡ adjusted for adiposity and within person variation [54].
Figure 3
Figure 3
Biological mechanisms linking intake of sugar-sweetened beverages (SSB) to the development of obesity, metabolic syndrome (Met Syn), diabetes, and cardiovascular disease (CVD). Incomplete compensation for liquid calories leads to obesity, which is a risk factor for cardiometabolic outcomes. Increased diabetes, MetSyn, and CVD risk also occur independent of weight through development of risk factors precipitated by adverse glycemic effects and increased fructose metabolism in the liver. Excess fructose ingestion promotes hepatic uric acid production, de novo lipogenesis, and accumulation of visceral and ectopic fat, and also leads to gout. HFCS = high-fructose corn syrup.

Similar articles

See all similar articles

Cited by 5 articles


    1. Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C., Jr., et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. - PubMed
    1. Beltran-Sanchez H., Harhay M.O., Harhay M.M., McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J. Am. Coll. Cardiol. 2013;62:697–703. doi: 10.1016/j.jacc.2013.05.064. - DOI - PMC - PubMed
    1. Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z. - DOI - PMC - PubMed
    1. Palmer M.K., Toth P.P. Trends in Lipids, Obesity, Metabolic Syndrome, and Diabetes Mellitus in the United States: An NHANES Analysis (2003–2004 to 2013–2014) Obesity. 2019;27:309–314. doi: 10.1002/oby.22370. - DOI - PubMed
    1. Malik V.S., Pan A., Willett W.C., Hu F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013;98:1084–1102. doi: 10.3945/ajcn.113.058362. - DOI - PMC - PubMed