Characterization of the human myocardium by optical coherence tomography

J Biophotonics. 2019 Dec;12(12):e201900094. doi: 10.1002/jbio.201900094. Epub 2019 Aug 26.

Abstract

Imaging of cardiac tissue structure plays a critical role in the treatment and understanding of cardiovascular disease. Optical coherence tomography (OCT) offers the potential to provide valuable, high-resolution imaging of cardiac tissue. However, there is a lack of comprehensive OCT imaging data of the human heart, which could improve identification of structural substrates underlying cardiac abnormalities. The objective of this study was to provide qualitative and quantitative analysis of OCT image features throughout the human heart. Fifty human hearts were acquired, and tissues from all chambers were imaged with OCT. Histology was obtained to verify tissue composition. Statistical differences between OCT image features corresponding to different tissue types and chambers were estimated using analysis of variance. OCT imaging provided features that were able to distinguish structures such as thickened collagen, as well as adipose tissue and fibrotic myocardium. Statistically significant differences were found between atria and ventricles in attenuation coefficient, and between adipose and all other tissue types. This study provides an overview of OCT image features throughout the human heart, which can be used for guiding future applications such as OCT-integrated catheter-based treatments or ex vivo investigation of structural substrates.

Keywords: cardiovascular diseases; humans; myocardium; optical coherence; tomography.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Collagen / metabolism
  • Female
  • Fibrosis
  • Heart / diagnostic imaging*
  • Humans
  • Image Processing, Computer-Assisted
  • Male
  • Middle Aged
  • Myocardium / cytology*
  • Myocardium / metabolism
  • Myocardium / pathology
  • Tomography, Optical Coherence*

Substances

  • Collagen