The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer

Mol Ther Nucleic Acids. 2019 Sep 6:17:657-668. doi: 10.1016/j.omtn.2019.07.002. Epub 2019 Jul 15.

Abstract

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that infects over 90% of the global population. EBV is considered a contributory factor in a variety of malignancies including nasopharyngeal carcinoma, gastric carcinoma, Burkitt lymphoma, and Hodgkin's lymphoma. Notably, EBV was the first virus found to encode microRNAs (miRNAs). Increasing evidence indicates that EBV-encoded miRNAs contribute to the carcinogenesis and development of EBV-associated malignancies. EBV miRNAs have been shown to inhibit the expression of genes involved in cell proliferation, apoptosis, invasion, and immune signaling pathways. Therefore, EBV miRNAs perform a significant function in the complex host-virus interaction and EBV-driven carcinogenesis. However, the integrated mechanisms underlying the roles of EBV miRNAs in carcinogenesis remain to be further explored. In this review, we describe recent advances regarding the involvement of EBV miRNAs in the pathogenesis of EBV-associated malignancies and discuss their potential utility as cancer biomarkers. An in-depth investigation into the pro-carcinogenic role of EBV miRNAs will expand our knowledge of the biological processes associated with virus-driven tumors and contribute to the development of novel therapeutic strategies for the treatment of EBV-associated malignancies.

Keywords: EBV; EBV-associated malignancies; cancer biomarker; cancer pathogenesis; carcinogenesis; microRNA.

Publication types

  • Review