Negative Memory Engrams in the Hippocampus Enhance the Susceptibility to Chronic Social Defeat Stress

J Neurosci. 2019 Sep 18;39(38):7576-7590. doi: 10.1523/JNEUROSCI.1958-18.2019. Epub 2019 Aug 12.

Abstract

The hippocampus has been highly implicated in depression symptoms. Recent findings suggest that the expression and susceptibility of depression symptoms are related to the enhanced functioning of the hippocampus. We reasoned that hippocampal engrams, which represent ensembles of neurons with increased activity after memory formation, could underlie some contributions of the hippocampus to depression symptoms. Using the chronic social defeat stress model, we examined social defeat-related hippocampal engrams in mice that are either susceptible or resilient to the stressor. TetTag mice were used to label social defeat-related hippocampal ensembles by LacZ. Engram cells correspond to ensembles that were reactivated by the same stressor. Compared with resilient and nonstressed control mice, susceptible mice exhibited a higher reactivation of social defeat-related LacZ-labeled cells (i.e., engram cells) in both the dorsal and ventral hippocampal CA1 regions. The density of CA1 engram cells correlated with the level of social avoidance. Using DREADD and optogenetic approaches to activate and inactivate social defeat-related CA1 engram cells enhanced and suppressed social avoidance, respectively. Increased engram cells in susceptible mice could not be found in the dentate gyrus. Susceptible mice exhibited more negative stimuli-related, but not neutral stimuli-related, CA1 engram cells than resilient mice in the dorsal hippocampus. Finally, chronic, but not a short and subthreshold, social defeat protocol was necessary to increase CA1 engram cell density. The susceptibility to chronic social defeat stress is regulated by hippocampal CA1 engrams for negative memory. Hippocampal negative memory engrams may underlie the vulnerability and expression of cognitive symptoms in depression.SIGNIFICANCE STATEMENT We provided evidence that negative memory hippocampal engrams contribute to the susceptibility to developing depression-related behavior after chronic social defeat stress. The activation of positive memory engrams has been shown to alleviate depression-related behaviors, while our findings reveal the pathological roles of negative memory engrams that could lead to those behaviors. Increased negative memory engrams could be a downstream effect of the reported high hippocampal activity in animal models and patients with depression. Unlike affective symptoms, we know much less about the cellular mechanisms of the cognitive symptoms of depression. Given the crucial roles of hippocampal engrams in memory formation, enhanced reactivation of negative memory engrams could be an important cellular mechanism that underlies the cognitive symptoms of depression.

Keywords: depression; engrams; hippocampus; individual difference; memory; stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CA1 Region, Hippocampal / physiology*
  • Depression / physiopathology
  • Male
  • Memory / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Neurons / physiology*
  • Stress, Psychological / physiopathology*

Grants and funding