Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds
- PMID: 31406678
- PMCID: PMC6685475
- DOI: 10.1002/advs.201900867
Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds
Abstract
Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load-bearing as bioscaffolds. Herein, a biodegradable high-strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N-acryloyl 2-glycine) (PACG) and methacrylated gelatin (GelMA) (PACG-GelMA) is successfully constructed by photo-initiated polymerization. Introducing hydrogen bond-strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG-GelMA hydrogel-Mn2+ and bottom layer of PACG-GelMA hydrogel-bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic-related and osteogenic-related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model.
Keywords: 3D printing; biohybrid gradient scaffolds; high strength; osteochondral regeneration; supramolecular polymers.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair.J Mater Chem B. 2017 Jan 28;5(4):731-741. doi: 10.1039/c6tb02348g. Epub 2017 Jan 3. J Mater Chem B. 2017. PMID: 32263841
-
A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.Acta Biomater. 2021 Jul 1;128:150-162. doi: 10.1016/j.actbio.2021.04.010. Epub 2021 Apr 22. Acta Biomater. 2021. PMID: 33894346
-
Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.Biofabrication. 2022 Feb 23;14(2):10.1088/1758-5090/ac5220. doi: 10.1088/1758-5090/ac5220. Biofabrication. 2022. PMID: 35120345 Free PMC article.
-
Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink.Adv Healthc Mater. 2021 Feb;10(3):e2001404. doi: 10.1002/adhm.202001404. Epub 2020 Nov 23. Adv Healthc Mater. 2021. PMID: 33225617
-
Is 3D Printing Promising for Osteochondral Tissue Regeneration?ACS Appl Bio Mater. 2023 Apr 17;6(4):1431-1444. doi: 10.1021/acsabm.3c00093. Epub 2023 Mar 21. ACS Appl Bio Mater. 2023. PMID: 36943415 Free PMC article. Review.
Cited by
-
3D printed osteochondral scaffolds: design strategies, present applications and future perspectives.Front Bioeng Biotechnol. 2024 Feb 15;12:1339916. doi: 10.3389/fbioe.2024.1339916. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 38425994 Free PMC article. Review.
-
Molecular co-assembled strategy tuning protein conformation for cartilage regeneration.Nat Commun. 2024 Feb 19;15(1):1488. doi: 10.1038/s41467-024-45703-3. Nat Commun. 2024. PMID: 38374253 Free PMC article.
-
Engineered Dynamic Hydrogel Niches for the Regulation of Redox Homeostasis in Osteoporosis and Degenerative Endocrine Diseases.Gels. 2023 Dec 30;10(1):31. doi: 10.3390/gels10010031. Gels. 2023. PMID: 38247755 Free PMC article. Review.
-
Modified FGF Hydrogel for Effective Axon Formation by Enhanced Regeneration of Myelin Sheath of Schwann Cells Using Rat Model.Int J Nanomedicine. 2023 Dec 5;18:7225-7236. doi: 10.2147/IJN.S417723. eCollection 2023. Int J Nanomedicine. 2023. PMID: 38076728 Free PMC article.
-
Manganese Enhances the Osteogenic Effect of Silicon-Hydroxyapatite Nanowires by Targeting T Lymphocyte Polarization.Adv Sci (Weinh). 2024 Jan;11(4):e2305890. doi: 10.1002/advs.202305890. Epub 2023 Dec 1. Adv Sci (Weinh). 2024. PMID: 38039434 Free PMC article.
References
-
- Huang H. J., Zhang X., Hu X. Q., Shao Z. X., Zhu J. X., Dai L. H., Man Z. T., Yuan L., Chen H. F., Zhou C. Y., Ao Y. F., Biomaterials 2014, 35, 9608. - PubMed
-
- Li L., Li J. Y., Guo J. M., Zhang H. K., Zhang X., Yin C. Y., Wang L. M., Zhu Y. S., Yao Q. Q., Adv. Funct. Mater. 2019, 29, 1807356.
-
- Shi W. L., Sun M. Y., Hu X. Q., Ren B., Cheng J., Li C. X., Duan X. N., Fu X., Zhang J. Y., Chen H. F., Ao Y. F., Adv. Mater. 2017, 29, 1701089. - PubMed
-
- Wang W., Sun L., Zhang P. F., Song J. F., Liu W. G., Acta Biomater. 2014, 10, 4983. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources