Background: Mast cell activation causes degranulation and release of cytokines, thereby promoting inflammation. The aim of this study was to investigate the inhibitory effect of CDK4/6 inhibition on mast cell activation in vitro and in vivo.
Methods: RBL-2H3 rat basophilic leukemia cells (BLCs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin (HSA) antigens, and treated with the CDK4/6 inhibitor palbociclib. Histological stains were applied to reveal cytomorphological changes. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine palbociclib effects on allergic reactions in vivo. Western blots were performed to detect the expression of cell signaling molecules associated with mast cell activation.
Results: Activated BLCs and BMMCs released copious granule-related mediators (histamine and β-hexosaminidase), which was reduced by palbociclib in a concentration-dependent manner. Palbociclib inhibited expression of the mast cell activation marker CD63 in activated BLCs and inhibited granule release (visualized with toluidine blue staining) while preventing morphological changes, (elongated shape maintained) and filamentous actin (F-actin) reorganization. Palbociclib suppressed molecular Lyn and/or mitogen-activated protein kinase (MAPK) signaling associated with mast cell activation in stimulated BLCs and attenuated allergic reactions in PCA mice dose dependently. Palbociclib attenuated body temperature reduction and diminished serum histamine levels in ovalbumin OVA-challenged ASA mice.
Conclusion: Palbociclib suppresses IgE-mediated mast cell activation in vitro and in vivo, suggesting that it may be developed into a therapy for mast cell-mediated allergic diseases via inhibition of mast cell degranulation.
Keywords: CDK inhibitor; Drug repurposing; Mast cells; Palbociclib.