Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1

Elife. 2019 Aug 21:8:e44667. doi: 10.7554/eLife.44667.

Abstract

Brain-derived neurotrophic factor (BDNF) is a critical growth factor involved in the maturation of the CNS, including neuronal morphology and synapse refinement. Herein, we demonstrate astrocytes express high levels of BDNF's receptor, TrkB (in the top 20 of protein-coding transcripts), with nearly exclusive expression of the truncated isoform, TrkB.T1, which peaks in expression during astrocyte morphological maturation. Using a novel culture paradigm, we show that astrocyte morphological complexity is increased in the presence of BDNF and is dependent upon BDNF/TrkB.T1 signaling. Deletion of TrkB.T1, globally and astrocyte-specifically, in mice revealed morphologically immature astrocytes with significantly reduced volume, as well as dysregulated expression of perisynaptic genes associated with mature astrocyte function. Indicating a role for functional astrocyte maturation via BDNF/TrkB.T1 signaling, TrkB.T1 KO astrocytes do not support normal excitatory synaptogenesis or function. These data suggest a significant role for BDNF/TrkB.T1 signaling in astrocyte morphological maturation, a critical process for CNS development.

Keywords: BDNF; TrkB; astrocyte; development; morphogenesis; mouse; neuroscience; synaptogenesis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Astrocytes / cytology*
  • Brain-Derived Neurotrophic Factor / metabolism*
  • Cell Differentiation*
  • Cells, Cultured
  • Membrane Glycoproteins / deficiency
  • Membrane Glycoproteins / metabolism*
  • Mice
  • Mice, Knockout
  • Morphogenesis*
  • Protein Isoforms / metabolism
  • Protein-Tyrosine Kinases / deficiency
  • Protein-Tyrosine Kinases / metabolism*
  • Signal Transduction*

Substances

  • Bdnf protein, mouse
  • Brain-Derived Neurotrophic Factor
  • Membrane Glycoproteins
  • Protein Isoforms
  • Ntrk2 protein, mouse
  • Protein-Tyrosine Kinases

Associated data

  • GEO/GSE122176