Differential expression of miRNAs and their targets in wax-deficient rapeseed

Sci Rep. 2019 Aug 21;9(1):12201. doi: 10.1038/s41598-019-48439-z.

Abstract

The cuticle of a plant, composed of cutin and wax, is the outermost hydrophobic layer covering the epidermis of all its aerial organs, protecting it from many abiotic and biotic stresses. The biosynthesis and regulation pathways of wax components have been well studied, whereas there are fewer reports on the small RNA-involved post-transcriptional regulation of wax biosynthesis in plants, particularly in Brassica napus. Previously, we conducted a study on a glossy mutant of rapeseed, and we assumed that there was a dominant repressor to inhibit the expression of wax-related genes. To verify this hypothesis and investigate the function of small RNAs in wax biosynthesis in B. napus, we constructed four small RNA libraries from the stem epidermis of wax-deficient mutant and wild-type plants for sequencing. Subsequently, 43,840,451 clean reads were generated and 24 nt sequences represented the dominant percentage. In total, 300 unique known miRNAs were identified and eight of them showed differential expression. In addition, the expression levels of six novel miRNAs were altered. Surprisingly, we found that four up-regulated miRNAs in the wax-deficient plants, bna-miR408b-5p, bna-miR165b-5p, bna-miR160a-3p, and bna-miR398-5p, were all complementary strands of their corresponding mature strands. Stem-loop qRT-PCR verified that the expression of bna-miR165a-5p was increased in the mutant stems, while its putative target, BnaA06g40560D (CYP96A2), was down-regulated. In addition, the expression of bna-miR827a was detected to be down-regulated in glossy mutant. 5' RACE experimental data showed that bna-miR827a cleaves three NITROGEN LIMITATION ADAPTATION (NLA) genes (BnaC08g45940D, BnaA10g01450D and BnaC05g01480D). The down-regulation of bna-miR827a resulted in decreased cleavage on its targets, and led to the up-regulation of its targets, especially BnaA10g01450D gene. These results showed that bna-miR165a-5p might participate in wax biosynthesis process by regulating its putative target BnaA06g40560D (CYP96A2). The expression levels of a phosphate (Pi)-related miRNA, bna-miR827a, and its target genes were affected in wax-deficient rapeseeds. These results will promote the study of post-transcriptional regulation mechanisms of wax biosynthesis in B. napus and provide new directions for further research.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassica napus / genetics
  • Brassica napus / metabolism*
  • Gene Expression Regulation, Plant*
  • MicroRNAs / biosynthesis*
  • MicroRNAs / genetics
  • Plant Proteins / biosynthesis
  • Plant Proteins / genetics
  • RNA, Plant / biosynthesis*
  • RNA, Plant / genetics
  • Waxes / metabolism

Substances

  • MicroRNAs
  • Plant Proteins
  • RNA, Plant
  • Waxes