Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses

Int J Mol Sci. 2019 Aug 22;20(17):4103. doi: 10.3390/ijms20174103.


The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.

Keywords: abiotic stress; basic leucine zipper; duplication; maize; subcellular localization; transcriptome analysis.

MeSH terms

  • Amino Acid Sequence
  • Chromosome Mapping
  • Computational Biology / methods
  • Conserved Sequence
  • Droughts*
  • Evolution, Molecular
  • Gene Duplication
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant*
  • Genes, Plant*
  • Genome, Plant
  • Genomics / methods
  • Leucine Zippers / genetics*
  • Multigene Family
  • Promoter Regions, Genetic
  • Stress, Physiological / genetics*
  • Transcriptome
  • Zea mays / classification
  • Zea mays / physiology*