Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits
- PMID: 31444360
- PMCID: PMC6707297
- DOI: 10.1038/s41467-019-11874-7
Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits
Abstract
Transcriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the accuracy of transcriptome prediction and increase the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge on biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify compounds that mimic, or reverse, trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.Pac Symp Biocomput. 2019;24:296-307. Pac Symp Biocomput. 2019. PMID: 30864331 Free PMC article. Clinical Trial.
-
How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?Pac Symp Biocomput. 2018;23:228-239. Pac Symp Biocomput. 2018. PMID: 29218884 Free PMC article.
-
Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression.Am J Hum Genet. 2017 Jun 1;100(6):885-894. doi: 10.1016/j.ajhg.2017.04.016. Epub 2017 May 25. Am J Hum Genet. 2017. PMID: 28552197 Free PMC article.
-
Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.Adv Genet. 2016;93:147-90. doi: 10.1016/bs.adgen.2015.11.004. Epub 2016 Jan 25. Adv Genet. 2016. PMID: 26915271 Free PMC article. Review.
-
The detection and characterization of pleiotropy: discovery, progress, and promise.Brief Bioinform. 2016 Jan;17(1):13-22. doi: 10.1093/bib/bbv050. Epub 2015 Jul 28. Brief Bioinform. 2016. PMID: 26223525 Review.
Cited by
-
Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis.Nat Genet. 2024 Mar 21. doi: 10.1038/s41588-024-01689-8. Online ahead of print. Nat Genet. 2024. PMID: 38514783
-
The genetic architecture of youth anxiety: a study protocol.BMC Psychiatry. 2024 Feb 23;24(1):159. doi: 10.1186/s12888-024-05583-9. BMC Psychiatry. 2024. PMID: 38395805 Free PMC article.
-
Network-based drug repurposing for schizophrenia.Neuropsychopharmacology. 2024 Feb 6. doi: 10.1038/s41386-024-01805-6. Online ahead of print. Neuropsychopharmacology. 2024. PMID: 38321095
-
Conditional transcriptome-wide association study for fine-mapping candidate causal genes.Nat Genet. 2024 Feb;56(2):348-356. doi: 10.1038/s41588-023-01645-y. Epub 2024 Jan 26. Nat Genet. 2024. PMID: 38279040
-
multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results.PLoS Comput Biol. 2023 Dec 7;19(12):e1011686. doi: 10.1371/journal.pcbi.1011686. eCollection 2023 Dec. PLoS Comput Biol. 2023. PMID: 38060592 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
