Mechanism for Copper(II)-Mediated Disaggregation of a Porphyrin J-Aggregate

ACS Omega. 2018 Dec 31;3(12):18843-18848. doi: 10.1021/acsomega.8b02913.

Abstract

J-aggregates of anionic meso-tetrakis(4-sulfonatophenyl)porphyrin form at intermediate pH (2.3-3.1) in the presence of NiSO4 or ZnSO4 (ionic strength, I.S. = 3.2 M). These aggregates convert to monomeric porphyrin units via metallation with copper(II) ions. The kinetics for the disassembly process, as monitored by UV/vis spectroscopy, exhibits zeroth-order behavior. The observed zeroth-order rate constants show a two-term dependence on copper(II) ion concentrations: linear and second order. Also observed is an inverse dependence on hydrogen ion concentration. Activation parameters have been determined for the disassembly process leading to ΔH = (+163 ± 15) kJ·mol-1 and ΔS = (+136 ± 11) J·K-1. A mechanism is proposed in which copper(II) cation is in pre-equilibrium with a reactive site at the rim of the J-aggregate. An intermediate copper species is thus formed that eventually leads to the final metallated porphyrin either through an assisted attack of a second metal ion or through a direct insertion of the metal cation into the macrocycle core.