Ceria Promoted Cu-Ni/SiO2 Catalyst for Selective Hydrodeoxygenation of Vanillin

ACS Omega. 2019 Mar 4;4(3):4770-4778. doi: 10.1021/acsomega.9b00039. eCollection 2019 Mar 31.

Abstract

A ceria (CeO2) promoted Cu-Ni bimetallic catalyst supported on SiO2 (Cu-Ni/CeO2-SiO2) was prepared and evaluated for catalytic hydrodeoxygenation (HDO) of vanillin. Silica supported monometallic Cu and Ni catalysts and bimetallic Cu-Ni catalyst (Cu/SiO2, Ni/SiO2, and Cu-Ni/SiO2), without a ceria promoter, were also synthesized and tested for the same application. The highest conversion of vanillin was achieved with the Cu-Ni/CeO2-SiO2 catalyst. Vanillyl alcohol was the sole product in the initial 2 h, followed by the formation of 2-methoxy-4-methylphenol, which was observed. Characterization of the synthesized catalysts revealed the presence of overlapping crystalline phases of CuO, NiO, and CeO2 on the Cu-Ni/CeO2-SiO2 surface. We extended our study to find out the results of using CeO2 as the support of the Cu-Ni bimetallic catalyst (Cu-Ni/CeO2). Partial incorporation of Cu and Ni cations into the ceria lattice took place, leading to the decrease of specific surface area and a concomitant compromise in the conversion. In the case of the Cu-Ni/CeO2-SiO2 catalyst, the higher conversion was accredited to the facile formation of Cu+ active centers by the synergistic interaction between Ce+4/Ce+3 and Cu+2/Cu+ redox couples and the incorporation of oxygen vacancies on the catalyst surface.