Picolyl Porphyrin Nanostructures as a Functional Drug Entrant for Photodynamic Therapy in Human Breast Cancers

ACS Omega. 2019 Jul 29;4(7):12808-12816. doi: 10.1021/acsomega.9b01380. eCollection 2019 Jul 31.

Abstract

The major challenge in photodynamic therapy (PDT) is to discover versatile photosensitizers (PSs) that possess good solubility in biological media, enhanced singlet oxygen generation efficacy, and photodynamic activity. Working in this direction, we synthesized a picolylamine-functionalized porphyrin conjugate, compound 1, and its zinc complex compound 2. Compound 1 forms spherical structures in methanol, whereas compound 2 exhibited vesicular structures. Compared to the existing PSs like foscan and photofrin, compound 2 exhibited a high singlet oxygen generation efficiency and triplet quantum yield. The complex also showed good water solubility, and its PDT activity was demonstrated through in vitro studies using MDA-MB 231 breast cancer cells. The mechanism of biological activity evaluated using various techniques proved that the active compound 2 induced predominantly singlet oxygen-triggered apoptosis-mediated cancerous cell death. Our results demonstrate that zinc insertion in the picolyl porphyrin induces an enhanced triplet excited state, and the singlet oxygen yields quantitatively and imparts excellent in vitro photodynamic activity, thereby demonstrating their pertinence as a nanodrug in future photobiological applications.