Gravity and rheotaxis based sperm sorting device employing a cam-actuated pipette mechanism

Rev Sci Instrum. 2019 Aug;90(8):084101. doi: 10.1063/1.5096793.

Abstract

Until now, a swim-up or microchip-based method has been mainly utilized for separating normal sperm for use in assisted reproductive technology. However, it requires excessive sorting time due to preprocessing and collects a limited number of motile sperms. To improve this process, we propose a gravity-fed high motility sperm sorting device that utilizes the rheotaxis of sperm, which minimizes separation time and improves throughput. The device features a mesoscale microfluidic channel to maximize the throughput, and an outlet at the bottom is configured to control the fluid velocity in the channel by using gravity. To control and automate semen injection and suction of the sorted sperm, a pipette controller using a cam was fabricated. After constructing the system, a sorting experiment was performed using canine semen to confirm the separation efficiency. After injecting the semen in the channel, the delay time between injection and suction was measured and the relative improvement of the index of motility was investigated according to measured delay time. As a result of repeated experiments, it was confirmed that the highest improvement was obtained at a delay time of 80 s, and the mean velocity, %motility, MI, and motile sperm rates were improved by 8.94%, 32.58%, 35.48%, and 21.99%, respectively.