Introduction: Flow describes a state of optimal experience that can promote a positive adaptation to increasing stress. The aim of the current study is to identify the ideal autonomic state for peak cognitive performance by correlating sympathovagal balance during cognitive stress with (1) perceived flow immersion and (2) executive task performance.
Materials and methods: Autonomic states were varied in healthy male participants (n = 48) using combinations of patterned breathing and skeletal muscle contraction that are known to induce differing levels of autonomic response. After autonomic variation, a Stroop test was performed on participants to induce a mild stress response, and autonomic arousal was assessed using heart rate variability. Subjective experience of flow was measured by standardized self-report, and executive task performance was measured by reaction time on the Stroop test.
Results: There were significant associations between autonomic state and flow engagement with an inverted U-shaped function for parasympathetic stimulation, sympathetic response, and overall sympathovagal balance. There were also significant associations between autonomic states and reaction times. Combining sympathetic and parasympathetic responses to evaluate overall sympathovagal balance, there was a significant U-shaped relationship with reaction time.
Discussion: Our results support the flow theory of human performance in which the ideal autonomic state lies at the peak of an inverted-U function, and extremes at either end lead to both suboptimal flow experience. Similarly, cognitive task performance was maximized at the bottom of the U-function. Our findings suggest that optimal performance may be associated with predominant, but not total, sympathetic response.
Keywords: cognitive performance; flow; heart rate variability; parasympathetic and sympathetic reactivity; sympathovagal balance.