Extracellular heat shock proteins in neurodegenerative diseases: New perspectives

Neurosci Lett. 2019 Oct 15:711:134462. doi: 10.1016/j.neulet.2019.134462. Epub 2019 Aug 30.

Abstract

One pathological hallmark of neurodegenerative diseases and CNS trauma is accumulation of insoluble, hydrophobic molecules and protein aggregations found both within and outside cells. These may be the consequences of an inadequate or overburdened cellular response to stresses resulting from potentially toxic changes in extra- and intracellular environments. The upregulated expression of heat shock proteins (HSPs) is one example of a highly conserved cellular response to both internal and external stress. Intracellularly these proteins act as chaperones, playing vital roles in the folding of nascent polypeptides, the translocation of proteins between subcellular locations, and the disaggregation of misfolded or aggregated proteins in an attempt to maintain cellular proteostasis during both homeostatic and stressful conditions. While the predominant study of the HSPs has focused on their intracellular chaperone functions, it remains unclear if all neuronal populations can mount a complete stress response. Alternately, it is now well established that some members of this family of proteins can be secreted by nearby, non-neuronal cells to act in the extracellular environment. This review addresses the current literature detailing the use of exogenous and extracellular HSPs in the treatment of cellular and animal models of neurodegenerative disease. These findings offer a new measure of therapeutic potential to the HSPs, but obstacles must be overcome before they can be efficiently used in a clinical setting.

Keywords: Alzheimer’s disease; Amyotrophic lateral sclerosis; Extracellular; Heat shock protein; Neurodegenerative; Stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Heat-Shock Proteins / metabolism*
  • Humans
  • Neurodegenerative Diseases / metabolism*

Substances

  • Heat-Shock Proteins