Genetic Evaluation of Eggshell Color Based on Additive and Dominance Models in Laying Hens

Asian-Australas J Anim Sci. 2020 Aug;33(8):1217-1223. doi: 10.5713/ajas.19.0345. Epub 2019 Aug 26.

Abstract

Objective: Eggshells with a uniform color and intensity are important for egg production because many consumers assess the quality of an egg according to the shell color. In the present study, we evaluated the influence of dominant effects on the variations in eggshell color after 32 weeks in a crossbred population.

Methods: This study was conducted using 7,878 eggshell records from 2,626 hens. Heritability was estimated using a univariate animal model, which included inbreeding coefficients as a fixed effect and animal additive genetic, dominant genetic, and residuals as random effects. Genetic correlations were obtained using a bivariate animal model. The optimal diagnostic criteria identified in this study were: L* value (lightness) using a dominance model, and a* (redness), and b* (yellowness) value using an additive model.

Results: The estimated heritabilities were 0.65 for shell lightness, 0.42 for redness, and 0.60 for yellowness. The dominance heritability was 0.23 for lightness. The estimated genetic correlations were 0.61 between lightness and redness, -0.84 between lightness and yellowness, and -0.39 between redness and yellowness.

Conclusion: These results indicate that dominant genetic effects could help to explain the phenotypic variance in eggshell color, especially based on data from blue-shelled chickens. Considering the dominant genetic variation identified for shell color, this variation should be employed to produce blue eggs for commercial purposes using a planned mating system.

Keywords: Bayesian; Eggshell Color; Genetic Evaluation; Heritability; Layer.