A sulfur coordination polymer with wide bandgap semiconductivity formed from zinc(II) and 5-methylsulfanyl-1,3,4-thiadiazole-2-thione

Acta Crystallogr C Struct Chem. 2019 Sep 1;75(Pt 9):1243-1249. doi: 10.1107/S2053229619010945. Epub 2019 Aug 9.

Abstract

The sulfur coordination polymer catena-poly[zinc(II)-μ2-bis[5-(methylsulfanyl)-2-sulfanylidene-2,3-dihydro-1,3,4-thiadiazol-3-ido-κ2N3:S]], [Zn(C3H3N2S3)2]n or [Zn2MTT4]n, constructed from Zn2+ ions and 5-methylsulfanyl-1,3,4-thiadiazole-2-thione (HMTT), was synthesized successfully and structurally characterized. [Zn2MTT4]n crystallizes in the tetragonal space group I-4 (No. 82). Each MTT- ligand (systematic name: 5-methylsulfanyl-2-sulfanylidene-2,3-dihydro-1,3,4-thiadiazol-3-ide) coordinates to two different ZnII ions, one via the thione group and the other via a ring N atom, with one ZnII atom being in a tetrahedral ZnS4 and the other in a tetrahedral ZnN4 coordination environment. These tetrahedral ZnS4 and ZnN4 units are alternately linked by the organic ligands, forming a one-dimensional chain structure along the c axis. The one-dimensional chains are further linked via C-H...N and C-H...S hydrogen bonds to form a three-dimensional network adopting an ABAB-style arrangement that lies along both the a and b axes. The three-dimensional Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots confirm the major interactions as C-H...S hydrogen bonds with a total of 35.1%, while 7.4% are C-H...N hydrogen-bond interactions. [Zn2MTT4]n possesses high thermal and chemical stability and a linear temperature dependence of the bandgap from room temperature to 270 °C. Further investigation revealed that the bandgap changes sharply in ammonia, but only fluctuates slightly in other solvents, indicating its promising application as a selective sensor.

Keywords: 1,3,4-thiadiazole-2-thione; ammonia sensor; bandgap; chemical stability; crystal structure; linear temperature dependence; one-dimensional coordination polymer; thermal stability; zinc(II).

Publication types

  • Research Support, Non-U.S. Gov't