Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 15;476(19):2757-2767.
doi: 10.1042/BCJ20190253.

Molecular, chemical, and structural characterization of prostaglandin A2 as a novel agonist for Nur77

Affiliations

Molecular, chemical, and structural characterization of prostaglandin A2 as a novel agonist for Nur77

Sowmya P Lakshmi et al. Biochem J. .

Abstract

Nur77 is a transcription factor belonging to the NR4A subfamily of nuclear hormone receptors. Upon induction, Nur77 modulates the expression of its target genes and controls a variety of biological and pathophysiological processes. Prior research that revealed a structurally atypical ligand-binding domain (LBD) and failed to locate an endogenous ligand had led to a classification of Nur77 as an orphan receptor. However, several more recent studies indicate that small synthetic molecules and unsaturated fatty acids can bind to Nur77. Discovery of additional endogenous ligands will facilitate our understanding of the receptor's functions and regulatory mechanisms. Our data have identified prostaglandin A2 (PGA2), a cyclopentenone prostaglandin (PG), as such a ligand. Cyclopentenone PGs exert their biological effects primarily by forming protein adducts via the characteristic electrophilic β-carbon(s) located in their cyclopentenone rings. Our data show that PGA2 induces Nur77 transcriptional activity by forming a covalent adduct between its endocyclic β-carbon, C9, and Cys566 in the receptor's LBD. The importance of this endocyclic β-carbon was substantiated by the failure of PGs without such electrophilic properties to react with Nur77. Calculated chemical properties and data from reactive molecular dynamic simulations, intrinsic reaction co-ordinate modeling, and covalent molecular docking also corroborate the selectivity of PGA2's C9 β-carbon towards Nur77's Cys. In summary, our molecular, chemical, and structural characterization of the PGA2-Nur77 interaction provides the first evidence that PGA2 is an endogenous Nur77 agonist.

Keywords: covalent bond; cyclopentenone ring; fatty acids; molecular modeling; nuclear receptors; transcription factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources