Sp1-induced upregulation of the long noncoding RNA TINCR inhibits cell migration and invasion by regulating miR-107/miR-1286 in lung adenocarcinoma

Am J Transl Res. 2019 Aug 15;11(8):4761-4775. eCollection 2019.

Abstract

Long non-coding RNA tissue differentiation-inducing non-protein coding (TINCR) is associated with the carcinogenesis of several cancers. However, little is known about the function and mechanism of TINCR in lung adenocarcinoma (LUAD). Here, we aimed to analyze expression of TINCR and elucidate its mechanistic involvement in the progression of LUAD. The expression of TINCR was investigated according to Gene Expression Profiling Interactive Analysis at first and then detected in 29 LUAD tissues and paired adjacent normal tissues using qRT-PCR. Results indicated that TINCR was evidently downregulated in LUAD. The association between TINCR and clinicopathological parameters was analyzed by Pearson's chi-square test, suggesting TINCR was closely correlated with TNM stage and lymph mode metastasis. Subsequently, the function role of TINCR was examined by gain- and loss-of-function studies in LUAD (A549 and NCI-H292) cells. As analyzed by the scratch wound-healing and transwell assays, results revealed that TINCR suppressed the migration and invasion of A549 and NCI-H292 cells. However, TINCR exerted no effects on the cell proliferation as determined by CCK8 assay. Furthermore, we reported that loss of Sp1 could inhibit TINCR expression. Expressions of miR-107/miR-1286 were detected by qRT-PCR assay in A549 and NCI-H292 cells after TINCR knockdown or overexpression. In addition, the direct binding ability of the predicted miR-107 or miR-1286 binding site on TINCR was validated by luciferase activity assay. Results indicated TINCR could constrain the expression of miR-107/miR-1286, and was a target of them in LUAD cells. Bioinformatics analyses showed that BTRC and RAB14 was the potential target gene of miR-107 and miR-1286, respectively. These data revealed a possible regulatory mechanism in which upregulation of TINCR induced by Sp1 could constrain the migration and invasion through regulating miR-107 or miR-1286 in LUAD cells. Conjointly, our findings provide a valuable insight into the regulatory mechanism of TINCR in LUAD, supportive to its potential of therapeutic target for LUAD patients.

Keywords: Sp1; TINCR; lung adenocarcinoma; miR-107; miR-1286; progression.