Environmental navigation entails the constant integration of information across space and time; however, the relation between spatial and temporal features involved in wayfinding has not been fully established yet. Here we investigated how two key spatio-temporal aspects of navigation - namely the processing of information concerning the order of landmarks along a route, and the duration of tracts connecting the same landmarks - relate to different types of navigational learning. Participants encoded a path in a real city in both a route and a survey format, and the acquisition of landmark, route and survey knowledge was tested. Participants' knowledge of landmarks order, and their perception of tracts duration were also assessed. Performance in the survey task, but not in the landmark and route tasks, significantly predicted accuracy in landmark ordering. The influence of tract length on retrospectively estimated tracts duration was also found to be significantly predicted only by accuracy in the survey learning task. These results support recent models of spatial navigation, invoking the dynamic interaction between different representation formats. Furthermore, they are consistent with theoretical views of an integrated account of the role of the hippocampus in navigation and memory.
Keywords: Allocentric representation; Egocentric representation; Environmental navigation; Time perception; Timing; Topographical orientation.
Copyright © 2019 Elsevier B.V. All rights reserved.