Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils

Microorganisms. 2019 Sep 7;7(9):329. doi: 10.3390/microorganisms7090329.


The benefit of plant growth-promoting microorganisms (PGPMs) as plant inoculants is influenced by a wide range of environmental factors. Therefore, microbial consortia products (MCPs) based on multiple PGPM strains with complementary functions, have been proposed as superior, particularly under challenging environmental conditions and for restoration of beneficial microbial communities in disturbed soil environments. To test this hypothesis, the performance of a commercial MCP inoculant based on 22 PGPM strains was investigated in greenhouse experiments with maize on three soils with contrasting pH, organic matter content and microbial activity, under different P and N fertilization regimes. Interestingly, the MCP inoculant stimulated root and shoot growth and improved the acquisition of macronutrients only on a freshly collected field soil with high organic matter content, exclusively in combination with stabilized ammonium fertilization. This was associated with transiently increased expression of AuxIAA5 in the root tissue, a gene responsive to exogenous auxin supply, suggesting root growth promotion by microbial auxin production as a major mode of action of the MCP inoculant. High microbial activity was indicated by intense expression of soil enzyme activities involved in C, N and P cycling in the rhizosphere (cellulase, leucine peptidase, alkaline and acid phosphatases) but without MCP effects. By contrast, the MCP inoculation did not affect maize biomass production or nutrient acquisition on soils with very little Corg and low microbial activity, although moderate stimulation of rhizosphere enzymes involved in N and P cycling was recorded. There was also no indication for MCP-induced solubilization of Ca-phosphates on a calcareous sub-soil fertilized with rock-phosphate. The results demonstrate that the combination of multiple PGPM strains with complementary properties as MCP inoculants does not necessarily translate into plant benefits in challenging environments. Thus, a better understanding of the conditions determining successful MCP application is mandatory.

Keywords: P solubilization; ammonium; auxin-responsive genes; microbial consortia; plant growth-promoting microorganisms; plant–microbial interactions.