Dual-Energy Low-keV or Single-Energy Low-kV CT for Endoleak Detection?: A 6-Reader Study in an Aortic Aneurysm Phantom

Invest Radiol. 2020 Jan;55(1):45-52. doi: 10.1097/RLI.0000000000000606.

Abstract

Objectives: The aim of this study was to compare image quality, conspicuity, and endoleak detection between single-energy low-kV images (SEIs) and dual-energy low-keV virtual monoenergetic images (VMIs+) in computed tomography angiography of the aorta after endovascular repair.

Materials and methods: An abdominal aortic aneurysm phantom simulating 36 endoleaks (2 densities; diameters: 2, 4, and 6 mm) in a medium- and large-sized patient was used. Each size was scanned using single-energy at 80 kVp (A) and 100 kVp (B), and dual-energy at 80/Sn150kVp for the medium (C) and 90/Sn150kVp for the large size (D). VMIs+ at 40 keV and 50 keV were reconstructed from protocols C and D. Radiation dose was 3 mGy for the medium and 6 mGy for the large size. Objective image quality and normalized noise power spectrum were determined. Subjective image quality, conspicuity, and sensitivity for endoleaks were independently assessed by 6 radiologists. Sensitivity was compared using Marascuilo procedure and Fisher exact test. Conspicuities were compared using Wilcoxon-matched pairs test, analysis of variance, and Tukey test.

Results: The contrast-to-noise-ratio of the aorta was significantly higher for VMI+ compared with SEI (P < 0.001). Noise power spectrum showed a higher noise magnitude and coarser texture in VMI+. Subjective image quality and overall conspicuity was lower for VMI+ compared with SEI (P < 0.05). Sensitivity for endoleaks was overall higher in the medium phantom for SEI (60.9% for A, 62.2% for B) compared with VMI+ (54.2% for C, 49.3% for D) with significant differences between protocols B and D (P < 0.05). In the large phantom, there was no significant difference in sensitivity among protocols (P = 0.79), with highest rates for protocols B (31.4%) and C (31.7%).

Conclusions: Our study indicates that low-keV VMI+ results in improved contrast-to-noise-ratio of the aorta, whereas noise properties, subjective image quality, conspicuity, and sensitivity for endoleaks were overall superior for SEI.

MeSH terms

  • Aortic Aneurysm / complications
  • Aortic Aneurysm / diagnostic imaging*
  • Computed Tomography Angiography / methods*
  • Endoleak / diagnostic imaging*
  • Endoleak / etiology
  • Phantoms, Imaging*
  • Radiography, Dual-Energy Scanned Projection / methods*
  • Signal-To-Noise Ratio