Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time

Cell Rep. 2019 Sep 10;28(11):2966-2978.e5. doi: 10.1016/j.celrep.2019.08.015.

Abstract

The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.

Keywords: Euclidean distance; intrinsic optical signal imaging; odor discrimination time; olfactory bulb; sniffing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Behavior, Animal / physiology*
  • Discrimination, Psychological / drug effects
  • Discrimination, Psychological / physiology*
  • Learning / drug effects
  • Learning / physiology
  • Mice
  • Mice, Inbred C57BL
  • Odorants
  • Olfactory Bulb / drug effects
  • Olfactory Bulb / physiology*
  • Olfactory Pathways / drug effects
  • Olfactory Pathways / physiology*
  • Reaction Time / physiology
  • Smell / physiology*
  • Wakefulness / drug effects
  • Wakefulness / physiology